Уралэнергомаш Уралэнергомаш
Статьи

Паровая турбина: устройство, принцип действия, основные элементы

Паровая турбина – это тип двигателя, использующего для вращения вала пар или разогретый воздух и который не нуждается во внедрении в конструкцию таких деталей как коленчатый вал, шатун, поршни

С общим устройством выше описанной конструкции многие знакомы еще со школьной скамьи. В научной литературе устройство паровой турбины описывается следующим образом.

Общее строение двигателя

Основная часть двигателя – вал, на который устанавливаются диски и рабочие лопатки, а рядом располагаются такие элементы как трубы-сопла. Последние осуществляют постоянное поступление горячего пара из котла. На момент поступления пара в сопло создается механическое давление на рабочие лопатки, и, следовательно, на всю конструкцию диска. Это давление создает вращающий момент, что заставляет двигаться диски и расположенные на нем лопасти.

Сегодня в паровых турбинах более распространено использование большого количества дисков, нанизываемых на один вращающийся вал. В таком случае работа двигателя осуществляется несколько иначе. Горячий пар, двигающийся через лопатки дисков теряет часть энергии, отдавая ее элементам конструкции. Такое устройство повышает эффективность использования энергии, но и, в свою очередь, требует оборудования котла дополнительного повторного подогрева пара. Наибольшую популярность паровые турбины имеют на тепловых и атомных ЭС, где их работа определяет получение переменного электрического тока. Здесь частота обращения вала может быть близкой 3000 оборотов в минуту. Такое значение позволяет выгодно получать электрическую энергию, вырабатываемую генераторами.

Необходимо отметить, что в настоящий момент паровые турбины также применяются на морсикх и речных судах. Эксплуатация же турбин на летательных аппаратах и в наземном транспорте недоступна из-за высокого потребления воды для нормальной работы генераторов.

Внутреннее и внешнее устройство сопла, его функции

Сопло – одна из наиболее важных частей паровой турбины, именно через него происходит постоянная подача пара.

На момент, когда у конструкторов еще не было достаточно полной информации о процессе расширения пара, сконструировать устройство с высоким коэффициентом полезного действия было невозможно. В первую очередь, это определялось строением сопл, которые на протяжении всей своей длины имели равный диаметр. При этом, проходящий через них пар двигался попадал в область меньшего давления. В таких условиях давление потока закономерно снижалось, преобразуясь в скорость движения. Для нормального насыщения сухого пара, уровень его давления на конце сопла должен быть более 0,58 от его начального уровня. Данное значение получило название критического давления. На его основе вычисляют и максимальную скорость потока, критической скоростью, которое для перегретого пара устанавливается в значении 0. 546 от исходного давления пара.

Но данных условий для рациональной работы двигателя также было недостаточно. Здесь при преодолении трубы сопла пар приходил во вращение из-за расширения потока. Решением данной задачи стало преобразование формы сопла двигателя. Теперь сопло имело более узкий диаметр, который увеличивался при приближении к дискам турбины. Дополнительной особенностью такой формы было то, что на выходе потока удавалось приблизить его давление к значениям давления во внешней среде у конца сопла. Это разрешило проблему вращения пара, что негативно сказывалось на скорости потока, и позволило достичь сверхкритических значений уровня давления.

Строение паровой турбины и принцип действия

Необходимо отметить, что в паровой турбины реализуются два принца действия, определяемых ее конструкцией.

Первый принцип – принцип активных турбин. Подразумеваются те конструкции, где увеличение объема горячего потока происходит в неподвижных труба и до места его перехода на движущийся диск.

Второй принцип – реактивный. К подобным двигателям относят все те, увеличение объема горячего потока в которых осуществляется и до моментов поступлений на вращающийся диск, и в промежуток времени между ними. Также устройства с подобной конструкцией обозначают как работающие на реакции. При условии потери тепла в трубах около половины от всех потерь паровую турбину тоже называют реактивной.

Когда исследуется конструкция двигателя и его основных частей, необходимо отметить и другие процессы. Так поток жидкости, направленной на вращающийся диск, будет производить на него давление. Уровень давления здесь будет находится в прямой зависимости от условий: объема поступающей жидкости, скорость струи при вступлении и выходе к рабочим лопаткам, профилю лопаток и угла падения жидкости на поверхность лопастей. Совершенно не обязательно, чтобы вода била о лопасти, скорее наоборот, такого эффекта чаще избегают и стремятся к плавному касанию струей лопатки.

Функционирование паровой турбины

Что представляет собой конструкция турбины, функционирующей на подобном принципе. Основное внимание привлекает закон, что тело имеет большую кинетическую энергию, если движется с высокой скоростью. Но необходимо понимать – энергия теряется при появлении потерь в скорости. Тогда есть следующие возможные варианты развития событий при соударении горячего потока с лопастью рабочей лопатки, находящейся перпендикулярно его направлению.

Возможен первый вариант: струя сталкивается со статичной поверхностью. Тогда энергия движения частично преобразуется в тепловую, а остаток энергии будет затрачена на движение частиц потока в противоположную от лопасти сторону, назад. Очевидно, что выполненная при этом полезная работа будет минимальна.

Другой вариант: лопасти турбины будут находиться в движении. Тогда определенная часть внутренней энергии затратится на передвижение диска с лопатками, а остаток также исчезнет без совершения какой-либо полезной работы.

В конструкции паровой турбины и процессе ее функционирования – активном –реализуется последний вариант. Конечно, следует учитывать цель – минимизировать нерациональные затраты энергии. Кроме того, необходимо обезопасить лопатки от повреждения при их столкновении с потоком пара. Добиться безопасного протекания процесса можно с помощью установки лопатки с наиболее выгодной для этого формой лопастей.

Посредством проведения обследований и соответствующих вычислений было выявлено, что наиболее приспособленной к столкновению с потоком будет такая форма лопатки, которая сумеет произвести плавный оборот, после чего направление движения струи будет смещено в противоположную сторону. То есть для лопастей следует подобрать форму полукруга. Тогда, при ударе о поверхность лопатки. Пар будет передавать максимум своей внутренней энергии на дис турбины осуществляя таким образом его вращение. Выявляемые в таком случае потери тепла будут приближаться к незначительным.

Принцип работы активной паровой турбины

Строение и общий принцир функционирования двигателя в работе следующий.

Горячий поток с установленными давлением и скоростью направляется в сопло, гда его объем увеличивается до второго значения давления. Соответственно с данным значением увеличивается и скорость движения потока. Приобретая с продвижением по соплу все большую скорость поток достигает рабочих лопаток. Оказывая давление на лопатки, пар осущаествляет дввижение диска и также соединенного с ним вала турбины.

После прохождения через лопатки, поток за счет соударения с препятствиями снижает значени скорости – значительная часть внутренней кинетической энергии преобразуется в мехаическую. Здесь также снижается уровень давления. Однако на входе и выходе с лопаток эти значения пара равны, что обуславливается равными сечениями каналов по всей длине между лопастями рабочих лопаток. Также сохранение исходного состояния пара обуславливается тем, что внутри самих деталей также не происходит дополнительного увеличения исходного объема пара. Для удаления отработанного пара в конструкции турбины существуют специальный патрубок.

Техническое устройство паровой турбины

Конструкция турбины содержит три цилиндра, представляющие собой статоры в неподвижной оболочке, и мощный вращающийся ротор. Несколько разделенных роторов скрепляются муфтами. Цепочка, составленная из роторов цилиндров, генератора электрического тока и возбудителя объединяется в валопровод. Размеры данной структуры конструкции при наибольших размерах ее частей составляет около 80 метров в длину.

При функционировании турбина и ее работа представляют собой следующее. Валопроводом осуществляется вращение в опорных подшибниках скольжения вкладышей. Обороты выполняются на плотном смазочном слое, металлических поверхностей вкладышей в ходе работы вал непосредственно не касается. Сегодня, как правило, роторы устройства устанавливаются на двух опорных подшибниках.

Иногда посреди роторов, относящимися к ЦВД и ЦСД, работает только один опорный подшибник. Поток, увеличивающий свой объем в турбине, принуждает роторы осуществлять вращение. Вырабатываемая роторами энергия соединяется в полумуфте и здесь получает свое наибольшее значение.

Также все элементы испытывают воздействие осевого напряжения. Усилия складываются а их наибольший показатель – осевое напряжение в совокупности – отдается на роторные сегменты.

Техническое строение ротора турбины

Отдельные роторы располагаются в цилиндры. Значения давления в них в современных двигателях нередко доходит до 500 Мпа, поэтому корпуса изготавливаются с двумя стенками, что позволяет снизить различия давления. Также это дает возможность сделать процесс стягивания фланцевых соединений значительно проще и быстрее. С данной мерой предосторожности возможно резкое изменение значения вырабатываемой двигателями мощности.

Необходимым является присутствие горизонтального отверстия, позволяющего осуществить быстрый монтаж деталей внутри корпуса конструкции, а также создает доступ к уже встроенному ротору при выполнении проверки и починки устройства. При монтировании самой турбины все разъемы и отверстия корпуса располагаются соответствующе. В целях упрощения процедуры монтажа паровой турбины согласуется, что все горизонтальные плоскости соединяются в единую.

При дальнейшей установке валоповоротного устройства он располагается в подготовленный горизонтальный разъем, гарантирующий центовку частей. Это требуется в первую очередь для предотвращения возникновения столкновений между статором и ротором в процессе работы двигателя. Данная проблема может создать серьезную аварию паровой турбины. Так как поток пара внутри паровой турбины обладает высокими температурами, а обращение ротора выполняется по смазочному слою, то температура масла не должна превышать 100 ᵒ Цельсия. Такие рамки оптимальны как в соответствии с нормами противопожарной безопасности, так и в целях сохранения смазочных свойств жидкости. В целях достижения данных значений, вкладыши подшибников располагаются вне стенок цилиндра в подготовленных опорах.

Эксплуатация турбин на атомных станциях

Конструкция турбины на атомной электростанции исследуется на примере устройств насыщенного пара, присутствующие только на объектах, эксплуатирующих в качестве источника энергии водяной пар. Первичные показатели конструкций на АЭС обладают невысокими показателями. Поэтому для получения необходимого эффекта через них пропускается большее количество жидкости. В связи с этим повышается влажность, осаждающаяся на элементах конструкций турбин. Решением здесь становятся влагоулавливатели внутри и вне корпусов двигателей.

Повышение уровня влажности также понижает конечный КПД паровой турбины и вызывает появление эрозионного разрушения сопл. Во избежание возможных повреждений детали конструкции хромируются, закаливаются, подвергаются электроискровой обработке. Так в условиях АЗС основной задачей конструкторов является защита конструкций от разрушений высокой влажностью.

Самым рациональным методом удаления лишней жидкости из турбин является метод отбора пара, выполняемый на регенеративные нагреватели. При этом если данные отборы размещаются на турбине поступенчато, тогда они осуществляют полноценное удаление лишней влаги и потребность в установке влагоулавливателей внутри турбин пропадает. Возможные значения влажности напрямую зависят от диаметра лопастей рабочих лопаток и на частоте обращения дисков.

Строение паровых и газовых турбин

Основное преимущество паровой турбины, как и паровых турбин AEG? – отсутствие необходимости соединения с турбинным валом генератора электрического тока. Оно устойчиво к перегрузкам и может управляться с помощью устройства регуляции частоты обращения вала. КПД у них также сравнительно высок, что с принятием во внимание всех других качеств выводит их на первое место по эффективности эксплуатации.

Схожими характеристиками обладают и газовые турбины, который по конструкции почти не отличаются о паровых. Они также являются устройствами лопаточного типа, и движение ротора здесь также осуществляется посредством превращения кинетической энергии потока.

Основное различие – в виде используемого рабочего вещества. Как в паровой таковым является вола, или пар, так в газовой используется газ, выделяемый горючими материалами или представляющий собой состав пара и воздуха. Дополнительной различие в оборудовании, необходимом для выделения данных рабочих веществ. Поэтому в целом конструкции почти одинаковы, но их дополнительное оборудование к ним различно.

Паровая турбина со встроенным конденсатом

Конденсаторы и паровые турбины были исследованы в монографии С.М.Лосева, изданной в 1964 году. Книга вмещала теоретическое описание устройства и функционирования турбин и их конденсаторных установок.

Турбинная установка, расположенная в нагревателе, вмещает несколько сред – водяную, газовую и конденсаторную, которые вместе составляют завершенный цикл. При таком условии в среде в процессе превращений тратится минимальное количество пара и воды. Для их восполнения в установку наливают природную воду, предварительно пропущенную через водоочиститель. Здесь вода выдерживает воздействие химикатов, очищающих ее от лишних примесей.

Принцип действия конденсаторной установки:

  • Поток газа, прошедший через лопатки турбины и имеющий сравнительно более низкое давление и количество тепла, выводится в конденсатор.
  • При этом на пути прохождении пара расположены трубки, с помощью которых насосами вытягивается остывающая жидкость. Зачастую она используется из природных водоемов.
  • При касании холодных стенок трубок пар преобразуется в конденсат, что связано с его более высокой температурой.
  • Образовавшийся конденсат собирается в конденсаторную установку, где попадает в трубки насоса и заливается в деаэратор.
  • Оттуда жидкость опять передается в нагреватель, преобразуется в газ и запускается в новый цикл.

Помимо этих главных элементов и простого алгоритма функционирования, существует перечень других устройств – турбонаддув и подогреватель.